

Material - ASME SB-564 N06110

Standard Specification for Nickel Alloy Forgings

Group - Non-Ferrous Nickel Alloys

Sub Group - ASME SB-564 N06110 Nickel Alloy Forgings

Application - Intended for Valve, Pump, General Engineering, Automotive and other Industries

Grade Belongs to the Industry - Forging

Chemical Composition		Heat Treatment	
C %	0.150 max.		
Si %	1.000 max.		
Mn %	1.000 max.		
Cr %	28.000 - 33.000	As-Cast or Annealing or Age Hardning	Age Hardning
S %	0.015 max.		
Mo %	9.000 - 12.000		
Р%	0.015 max.		
Cu %	0.500 max.		
Nb% + Ta%	1.000 max.	Mechanical Properties	
W %	1.000 - 4.000	Tensile Strength in Mpa	621 min.
Fe %	1.000 max.	Yield Strength in Mpa	276 min.
Al %	1.000 max.	Elongation in %	50 min.
Ti %	1.000 max.	Reduction of Area in %	-
Ni %	51.000 min.	Hardness in BHN	-
-	-	Impact in Joule	-
	C % Si % Mn % Cr % S % Mo % P % Cu % Nb% + Ta% W % Fe % Al % Ti % Ni %	C % 0.150 max. Si % 1.000 max. Mn % 1.000 max. Cr % 28.000 - 33.000 S % 0.015 max. Mo % 9.000 - 12.000 P % 0.015 max. Cu % 0.500 max. Nb% + Ta% 1.000 max. W % 1.000 max. Ti % 1.000 max. Ti % 1.000 max. Ni % 51.000 min.	C % 0.150 max. Si % 1.000 max. Mn % 1.000 max. Cr % 28.000 - 33.000 S % 0.015 max. Mo % 9.000 - 12.000 P % 0.015 max. Cu % 0.500 max. Nb% + Ta% 1.000 max. W % 1.000 max. Mo % 1.000 max. Mb% + Ta% 1.000 max. Max Mechanical Properties W % 1.000 max. Fe % 1.000 max. Al % 1.000 max. Ti % 1.000 max. Reduction of Area in % Ni % 51.000 min.

Cross Reference Table				
Material	Standard	Country	Gr <mark>ade Belong</mark> to the Industry	
B 564 N06110	ASTM	USA	Forging	
B 755 N06110	ASTM	USA	Plate, Sheet and Strip	
B 756 N06110	ASTM	USA	Rod and Bar	
B 757 N06110	ASTM	USA	Pipe	
B 758 N06110	ASTM	USA	Tube	
B 759 N06110	ASTM	USA	Pipe and Tube	
N06110	UNS	USA	Forging	

Further any inquiry to discuss with Gravity Cast Pvt. Ltd. – Gravity Group of Companies team member Call on +918469160029, or email marketing@gravitycastindia.com

All information in our data sheets and website is indicative only and is not intended to be a substitute for the full specification from which it is extracted. It is intended to provide typical values to allow comparison between metal alloy option rather than a definitive statement of mechanical performance or suitability for a particular application as these will vary with temperature, product type and product application. It is presented apart from contractual obligations and does not constitute any guarantee of properties or of processing or application possibilities in individual cases. Our warranties and liabilities are stated exclusively in our terms of business.

ONE STOP SOLUTION FOR METAL PARTS